Der Jahresbeginn brachte bisher wenig erfreuliches an den Aktienmärkten und die Angst vor einem beginnenden Bärenmarkt macht sich breit.
Welche Möglichkeiten gibt es – für den fundamentalen Investor – in einem Bärenmarkt, der von sinkenden Kursen geprägt ist, Geld zu verdienen?
Ich zeige heute drei Varianten wie man auf fallende Kurse spekulieren bzw. sein Portfolio ein wenig gegen diese absichern kann.
Dabei gehe ich auf den Leerverkauf, die Put-Option und die Optionsstrategie Put-Spread ein – und dies bewusst in dieser Reihenfolge da ich die Methoden nach Risiko sortiert habe – von sehr riskant bis weniger riskant.
Die Optionsstrategie des Put-Spread eignet sich sogar für seitwärts gerichtete Märkte. Auch wenn die Kurse sich nicht vom Fleck rühren kann man damit Geld verdienen – nur zu stark steigen dürfen sie nicht 😉
In der Serie über die Jahresendrally untersuche ich heute, ob es tatsächlich im Dezember zu erhöhten Kursgewinnen kommt und ob man “Window dressing” merkt.
Bereits im letzten Beitrag habe ich angedeutet, dass es heisst, im Dezember – besonders in den letzten Handelstagen – kommt es oft zu größeren Kursgewinnen an den Börsen. Man spricht von der “Jahresendrally”. Eine mögliche Erklärung dafür bietet das sogenannte “Window dressing” (= “Schaufenster Verschönerung”) welches Fonds betreiben welche besonders in den letzten Tagen des Jahres die Aktien in ihren Bestand aufnehmen die in den vergangenen Monaten am besten gelaufen sind, um in der Bilanz zum Jahreswechsel die “Gewinner” in ihrem Porftolio vorzeigen zu können.
Im folgenden Beitrag untersuche ich statistisch ob überhaupt der Dezember in der Vergangenheit ein guter Börsemonat war und inwieweit tatsächlich genau die Aktien im Dezember stärker gestiegen sind welche in den Monaten davor am besten gelaufen sind.
Der Dezember 2015 ist ja bisher nicht gerade rosig gelaufen an den Börsen – eventuell ein Grund für den Einstieg?
Das Jahr 2015 neigt sich langsam dem Ende zu und ich möchte hier im Financeblog eine kleine Serie starten über das Thema Jahresendrally. Wie bewegend sind die letzten Handelstage eines Jahres tatsächlich? Kommt es wirklich vermehrt in den letzten Tagen eines Jahres zu einer Rally (ansteigende Kurse an den Börsen)? Was sind die Ursachen.
Beginnen werde ich die Serie mit einem Rückblick auf das Jahr 2015 nach heutigem Stand. Ich habe dazu wieder die wichtigsten weltweiten Aktienindices miteinander verglichen um zu sehen wo noch Aufhol-potential herrscht bzw. wer die bisherigen Gewinner in diesem Jahr sind. Diese Informationen sind ein Anfang für die nächsten Teile der Serie.
Also schauen wir einmal welches Land bisher die Pole-Position 2015 an den Börsen hält.
Heute gibt es wieder einen neuen Beitrag in meiner “Derivate für Anfänger” Serie: Es geht um die bekannte Optionsstrategie “Covered Call”, welche es ermöglicht aus Aktien ein zusätzliches Einkommen zu generieren. Bei vielen Aktien erhält man bekanntlich regelmässig eine Dividende. Es gibt allerdings noch eine weitere Möglichkeit aus dem Aktienbestand Cashflow zu generieren ohne das Risiko bei einem Kursverlust zu vergrößern: Der Verkauf von Call-Optionen – durch ihn nimmt man eine Prämie ein, die sogar deutlich höher sein kann als eine gute Dividende, allerdings gibt man (teilweise) Chancen auf Kursgewinne dafür auf.
Wie diese Optionsstrategie im Detail funktioniert werde ich heute versuchen möglichst verständlich zu beschreiben. Man benötigt dafür jedenfalls keinen Nobelpreis in Mathematik. Am Ende des Artikels bringe ich außerdem ein konkretes Beispiel.
Welche Börsen sind die wichtigsten der Welt? Wie hoch ist eigentlich der Wert aller an der Börse gehandelten Unternehmen der ganzen Welt zusammengenommen? Steckt derzeit insgesamt mehr Geld in Aktien oder in Anleihen? Welche Rolle spielen Derivate?
All diese Fragen versuche ich heute zu beantworten.
Volatilität steht für die Schwankungen an den Märkten. (lat. “volare” = fliegen). Sie misst wie stark Kursschwankungen in einem bestimmten Zeitraum sind – also quasi die Turbulenzen am Flug des Marktes.
Aber auch Volatilität selbst kann man handeln, da es eine erwartete Volatilität (=implizite Volatilität) und eine tatsächliche Volatilität gibt (die natürlich noch niemand kennen kann).
Derzeit ist die implizite Volatilität bei vielen Märkten extrem niedrig.
Heute zeige ich, wie man diese Assetklasse “Volatilität” mit Hilfe von Optionen handeln kann.
Dazu werde ich in das Thema “Optionsstrategien” vorstoßen und eine einfache Optionsstrategie zeigen.
Heute gehe ich einen Schritt weiter und möchte erklären, wie man Optionen bewertet.
Ich werde außerdem aufzeigen, dass das eigentlich unmöglich ist und welche fatale Folgen diese Tatsache in der Vergangenheit schon hatte.
Soviel vorweg: Dieses Thema ist recht komplex, und deshalb ist das bisher der längste Artikel im Financeblog. Ich hoffe es gibt dennoch einige interessierte Leser die ihn bis zum Ende lesen.
Es geht los:
Die Bewertung einer Option am Fälligkeitstag haben wir ja bereits im letzten Teil gelernt – und die ist relativ einfach.
Noch einmal zur Wiederholung am Beispiel einer Call-Option: Wir erinnern uns: Eine Call-Option (auch Kauf-Option genannt) auf eine bestimmte Aktie (Underlying) berechtigt an einem festgelegtenZeitpunkt (dem Fälligkeitstag) zum Kauf dieser Aktie zu einem festgelegten Preis (auch “Strike” genannt).
Der Wert der Call Option am Fälligkeitstag ist also einfach zu berechnen : Kurs des Underlyingsam Fälligkeitstag minus Strike-Preis
Ein Beispiel: Eine Call-Option auf die Aktie X (=Underlying) hat den Strike 100 und die Fälligkeit am 20. Februar 2015.
Sollte die Aktie X am 20. Februar 120 kosten, so ist die Call-Option 20 wert, da man bei Ausübung der Option die Aktie für 100 kaufen und sofort danach für 120 verkaufen könnte.
Wie stellt man den Wert einer Option vor dem Fälligkeitstag fest?
Das ist eine sehr komplexe Frage für deren (vermeintliche) Lösung sogar ein Nobelpreis verliehen wurde: Robert Merton und Myron S. Scholes erhielten 1997 den Wirtschaftsnobelpreis für die Entwicklung des Black & Scholes Modells zur Berechnung von Optionswerten.
Weshalb diese Black & Scholes Formel so komplex ist, und wieso sie dennoch an den realen Finanzmärkten schon oft kläglich versagte möchte ich jetzt zeigen:
Was beeinflusst den Wert einer Option vor dem Verfallsdatum?
Folgende wichtigen Feststellungen müssen wir hierfür treffen:
1)Wenn die Option “im Geld” ist, also der Ausübungspreis (Strike) unterhalb des aktuellen Kurses des Underlyings liegt, so ist die Option MINDESTENS so viel wert wie die Differenz zwischen Kurs des Underlyings und Ausübungspreis.
Die Erklärung dafür, warum das so ist ist recht einfach: Am Fälligkeitstag – wie wir ja eben gesehen haben – ist der Wert der Call-Option genau die Differenz zwischen Kurs des Underlyings und Ausübungspreis (Strike) . Notiert das Underlying bereits vor dem Fälligkeitstag über dem Strike so besteht ja die Chance, dass das Underlying noch weiter steigt und der Optionswert ebenfalls.
Nun kann natürlich das Argument gebracht werden, dass das Underlying ja auch wieder unter den Strike der Option fallen könnte bevor die Option fällig wird. Dagegen kann man sich aber problemlos absichern, indem man das Underlying einfach (Leer)verkauft Am Fälligkeitstag kann man es ja auf jedenfall zum Strike-Preis wieder kaufen und hat die Differenz zum Strike verdient. Beispiel: Eine Option auf eine Aktie hat den Strike 100 und eine Restlaufzeit von 1 Monat. Die Aktie steht am Bewertungsstichtag – also 1 Monat vor Fälligkeit der Option – auf 120. Man kann diese Aktie also um 120 verkaufen (das geht auch ohne sie zu besitzen, indem man sie sich ausborgt und einfach 1 Monat später zurückgibt – so etwas nennt man Leerverkauf. Über die meisten Online-Broker geht das sehr einfach)
Sollte die Aktie bis zum Fälligkeitstag unter 100 fallen, so verfällt zwar die Option wertlos, aber man kann die Aktie dann billiger zurückkaufen und zurückgeben. Man hat also einen Gewinn von mindestens 20 gemacht.
Sollte die Aktie aber weiter steigen, so übt man am Verfallstag einfach die Option aus, kauft die Aktie für 100 und gibt sie zurück. Da man sie für 120 verkauft hat, hat man einen Gewinn von 20 gemacht – genau die Differenz zwischen Ausübungspreis und Aktienkurs zum Zeitpunkt des Bewertungsstichtages.
Es ist also sinnlos eine Option (auch wenn das bei amerikanischen Optionen erlaubt ist) vorzeitig auszuüben.
2) Der Wert einer Option ist umso höher, je höher die erwarteten Kursschwankungen des Underlyings in der Restlaufzeit sind – dieser Fakt ist der wichtigste bei der Bewertung von Optionen. Auch diese Tatsache ist recht einfach zu erklären: Schwankt der Kurs des Underlyings stärker so ist die zukünftige Kursentwicklung unklarer und die Gewinnchancen am Fälligkeitstag steigen.
Bzw. anders ausgedrückt: Hätte man statt der Option das Underlying im Portfolio, so wäre man dem kompletten Risiko der Kursschwankungen ausgesetzt – man könnte zwar eventuell viel gewinnen, aber auch sehr viel verlieren. Da eine Option wesentlich weniger Kapital bindet als der Besitz des Underlyings, aber die gleichen Chancen bei der richtigen Kursentwicklung bietet wie eben der Besitz dieses Underlyings (bei einer Call-Option im Falle von steigenden Kursen) muss sich diese Tatsache ebenfalls in der Bewertung der Option widerspiegeln.
Auch hier ein Beispiel zum Verständnis:
Wieder haben wir eine Call-Option auf eine Aktie X mit Strike 100 und Restlaufzeit in diesem Beispiel von einem Jahr. Außerdem haben wir noch eine weitere Call-Option auf Aktie Y, ebenfalls mit Strike 100 und mit der selben Restlaufzeit ebenfalls von einem Jahr.
Aktie X hat eine erwartete Schwankungsbandbreite (Volatilität) von 50% im Jahr. Aktie Y hingegen hat nur eine erwartete Volatilität von 15% im Jahr. Beide Aktien notieren derzeit (am Bewertungsstichtag der Option) bei etwa 100. Beide Optionen sind also gerade am Geld “at-the-money”.
Der Markt erwartet aber im ersten Fall bei Aktie X Schwankungen im nächsten Jahr von 50%, d.h. die Aktie könnte am Verfallstag entweder bei 150 oder bei 66,67 stehen, oder irgendwo dazwischen.
Bei Aktie Y erwartet der Markt nur Schwankungen von 15%, die Aktie könnte also am Verfallstag bei 115 oder bei 86,96 stehen oder irgendwo dazwischen.
Im besten Fall könnte man also bei der ersten Option am Verfallstag einen Wert von 50 realisieren, bei der zweiten Option nur einen Wert von 15. Der Einfluss der Volatilität auf den Wert einer Option ist also sehr hoch.
3) Der Wert einer Option enthält alle Finanzierungskosten bis zum Strike-Preis für das Underlying bis zur Fälligkeit.
Diese Aussage ist am schwierigsten zu verstehen bzw. zu erklären: Ich fange deshalb hier mit einem Beispiel an: Aktie X steht derzeit bei 120. Eine Call-Option auf Aktie X mit dem Strike 100 und Laufzeit von einem Jahr kostet also – wie wir gesehen haben – mindestens 20.
Wenn man nun eine Aktie kaufen möchte, muss man 120 investieren. Für den Kauf der Option nur etwas über 20. Kauft man also die Option so muss man also deutlich weniger Kapital aufbringen als der Aktien-Käufer, nimmt aber genauso an Kursgewinnen teil wie ein Besitzer der Aktie.
Der Aktienbesitzer musste sich aber entweder die 120 die er für die Aktie bezahlt hat ausborgen und dafür Zinsen zahlen, oder er hat das Geld am Konto und verzichtet beim Aktienkauf auf Zinsen die er bekäme, hätte die Aktie nicht gekauft sondern das Geld einfach liegen lassen (das nennt man Opportunitätskosten) .
In unserem Beispiel sieht man, dass der Optionskäufer um fast 100 weniger an Kapital aufbringen musste als der Aktienkäufer. Und, da er diese 100 quasi “sparen” kann – also Zinsen dafür einnehmen kann – muss er diese Zinsen auch mit dem Optionspreis bezahlen.
Auf der anderen Seite kann es sein, dass ein Unternehmen noch vor Fälligkeit der Option Dividenden ausschüttet, die höher sind als die Zinsen die für die Finanzierung des Aktienkaufs zu zahlen wären. Diese Dividenden bekommt natürlich ein Optionsbesitzer nicht, da er die Aktie ja erst am Fälligkeitstag erwerben kann, und erst ab dann Anrecht auf Dividendenzahlungen hat.
Deshalb werden erwartete Dividendenzahlungen von dem Wert der Option wieder abgezogen.
Die Finanzierungskosten setzten sich also wie folgt zusammen: Zinsen für das aufgebrachte Kapital (bis zum Strike) abzüglich der erwarteten Dividenden.
Diese Finanzierungskosten sind immer Teil des Optionspreises (der Optionsprämie)
Nun haben wir also 3 Faktoren ausgemacht, die den Preis einer Option vor Fälligkeit bestimmen:
1) Abstand zum Strike
2) Die Höhe der erwarteten Kursschwankungen (die sogenannte implizite Volatilität) 3) Die Finanzierungskosten
Die Faktoren 1) und 3) sind relativ leicht zu bestimmen und lassen auch nicht viel Betrachtungsspielraum zu. Einzig bei den Zinsen und den erwarteten Dividenden kann es eventuell Ungewissheiten geben, aber die sind bei weitem nicht so groß wie der Hauptfaktor, der die Optionsprämie am meisten beeinflusst: Die implizite Volatilität.
Und genau hier kommt die Nobelpreis-Formel ins Spiel:
Die berühmte Black&Scholes Formel zur Optionsbewertung vergleicht die Kapitalmärkte mit den Zufallsprozessen der brownschen Bewegung. Diese brownsche Bewegung ist eine zufällige Bewegung von Teilchen die in Flüssigkeiten oder Gasen bedingt durch Abstoßungsreaktionen auf andere Teilchen beobachtet werden können.
Eine Grund-Voraussetzung für die Richtigkeit dieser Formel ist die Annahme, dass Kursschwankungen der Finanzmärkte sich völlig zufällig und normalverteilt bewegen.
Normalverteilt bedeutet, dass die einzelnen Kursschwankungen einer Gaußschen Glockenkurve entsprechen. D.h. betrachtet man z.B. ein Jahr mit etwa 260 Handelstagen so wird an den meisten Tagen die Schwankung eher geringer ausfallen. An einigen wenigen Tagen gibt es stärkere Schwankungen.
Kurzer Exkurs: Normalverteilung und Volatilität:
Der Normalverteilung begegnet man beispielsweise, wenn man eine Gruppe von Menschen auf ihre Größe untersucht. Die meisten werden eine Durchschnittsgrösse haben bzw. etwa größer oder etwas kleiner als der Durchschnitt sein. Eine wenige werden extrem klein sein und ebenfalls wenige werden extrem groß. Trägt man die Größen dieser Menschen auf einer Skala auf, wo die X-Achse für die Größe steht und die Y-Achse für die Anzahl der Menschen mit dieser Größe, so erhält man eine Glockenkurve die der Normalverteilung entspricht.
Die Größe der meisten Menschen weicht also nicht sehr stark vom Durchschnitt ab. Je größer die Abweichung vom Durchschnitt, umso weniger Menschen mit ensprechender Größe gibt es. Ganz wenige werden zu Riesen oder bleiben Zwerge – sie sind am Rand der Glockenkurve zu finden.
Die Durchschnittsgröße der Menschen entspricht dem sogenannten Erwartungswert. Nun haben aber natürlich nicht alle Menschen Durchschnittsgröße. Die meisten sind ein wenig größer oder ein wenig kleiner als der Durchschnitt. Einige wenige sind aber extrem groß (“Riesen”) oder sehr klein (“Zwerge”. Hierbei handelt es sich um sogenannte “Ausreißer”
Rechnet man den durchschnittlichen Abstand der Größen aller untersuchter Menschen zum Erwartungswert aus (also inkl. der Ausreißer) so bekommt man die Standardabweichung.
Die durchschnittliche Abweichung vom Erwartungswert nennt man also Standardabweichung. Untersucht man z.B. 200 Menschen auf Ihre Größe und ermittelt als Durchschnittsgröße dieser Menschen 165cm so sind diese 165cm der Erwartungswert. Der durchschnittliche Abstand zum Erwartungswert ist dann die Standardabweichung. Nehmen wir eine Standardabweichung von 20cm in diesem Beispiel, würde das bedeuten, dass die 200 Menschen im Durchschnitt zwischen 145cm und 185cm gross sind. 68,27% der untersuchten Menschen werden sich in diesem Beispiel innerhalb der Bandbreite +/- 1 Standardabweichung befinden.
In der Grafik habe ich die Kurve der sogenannten “Standard-Normalverteilung” gezeichnet (mittels dem mit MacOS X mitgelieferten Programm “Grapher” – übrigens ein Juwel für jeden Mathematik-Nerd 😉 )
Bei der Standard-Normalverteilung entspricht der Erwartungswert 0 und die Standardabweichung 1.
Ich habe grau den Bereich zwischen einer Standardabweichung hervorgehoben. Für Mathematik-Nerds: Ich habe die Kurve im Bereich -1 bis 1 integriert, also die Fläche darunter ausgerechnet und hervorgehoben.
Die Fläche unter der gesamten Kurve beträgt natürlich 1, da alle möglichen Ereignisse (in unserem Beispiel Körpergrössen) unter dieser Kurve abgebildet sind. Die Fläche zwischen -1 und 1, also innerhalb einer Standardabweichung (auch 1 Sigma genannt), entspricht 0,6827 – d.h. dass eben 68,27% aller Ereignisse (Körpergrößen in unserem Fall) innerhalb von einer Standardabweichung liegen.
Erweitert man die Betrachtung auf 2 Standardabweichungen (2 Sigma) so sind bereits 95,45% aller Ereignisse innerhalb der Kurve.
Nur noch jedes ca. 22te Ereignis wäre außerhalb. In unserem Fall würde das bedeuten, dass nur jeder 22te entweder 165cm + 2 x 20cm = 205 cm gross oder 165cm – 2 x 20cm = 125cm klein wäre. Woran man sieht, dass die Standardabweichung bei Körpergrössen wahrscheinlich kleiner als 20cm ist, da weniger als jeder 20te über 2 Meter groß ist 😉
Bei 3 Sigma sind es schon 99,73% die sich innerhalb des Bereiches befinden und nur noch jedes 370te Ereignis ist außerhalb.
Bei 4 Sigma sind es 99,993% und jedes 15.787te Ereignis ist außerhalb
Bei 5 Sigma sind es 99,99994% innerhalb und jedes 1.74 Millionste Ereignis ist außerhalb.
Bei 6 Sigma sind es 99,9999998% innerhalb und nur noch jedes 506,8 Millionste Ereignis ist außerhalb.
Man spricht deshalb öfters bei vollkommen unmöglichen Ereignissen an den Märkten die plötzlich dennoch auftraten von “Sigma-6-Events”.
Die Wahrscheinlichkeit, dass ein solcher Event eintritt liegt bei 1 : 507.797.346 . Geht man von etwa 260 Handelstagen im Jahr aus, würde also nur etwa alle 1,9 Millionen Jahre ein derartiger Event eintreten.
Das ist bereits ein erster Hinweis dafür, dass die Normalverteilung nicht einfach auf Finanzmärkte angewandt werden kann.
Normalverteilung auf den Finanzmärkten:
Um zu verdeutlichen wie man sich die Normalverteilung von Renditen (=Kursausschläge) an Finazmärkten erklärt bringe ich nun Beispiele:
Zuerst schauen wir uns die Entwicklung einer Aktie mit geringer Volatilität an: Procter und Gamble hatte im letzten Jahr eine Volatilität von etwa 13%.
Wir betrachten jeden einzelnen Handelstag im letzten Jahr und schauen wie viel die Aktie sich an diesem jeweiligen einen Tag bewegt hat. Diese Bewegungen fassen wir in Abständen von 0,4% zusammen und zählen sie ab.
So hat sich die P&G-Aktie im letzten Jahr am häufigsten zwischen -0,4% und 0% pro Tag bewegt (66 mal) und ebenso oft zwischen 0% un 0,4%. Bewegungen zwischen -3,6% und -3,2% gab es nur ein einziges Mal.
Kursentwicklung
Anzahl Tage
-4,00%
0,00
-3,60%
1,00
-3,20%
0,00
-2,80%
0,00
-2,40%
0,00
-2,00%
5,00
-1,60%
9,00
-1,20%
18,00
-0,80%
37,00
-0,40%
66,00
0,00%
66,00
0,40%
35,00
0,80%
27,00
1,20%
10,00
1,60%
3,00
2,00%
3,00
2,40%
0,00
2,80%
1,00
3,20%
0,00
3,60%
0,00
4,00%
0,00
4,40%
0,00
Grafisch schaut die Tabelle dann so aus:
Wir sehen deutlich eine Häufung in der Mitte die nach links und rechts jeweils nachlässt. Es besteht also eine gewisse Ähnlichkeit mit der Gaußschen Glockenkurve die die Häufigkeit bei einer Normalverteilung beschreibt.
Den Wert, der am aller häufigsten vorkommt – und gleichzeitig auch der Durchschnitt aller Werte – ist der Erwartungswert. In diesem Fall ist das 0,04%. Bei der Normalverteilung streuen sich alle anderen Ereignisse symetrisch um diesen Erwartungswert. Ihre Häufigkeit nimmt mit der Entfernung zum Erwartungswert stetig ab.
Die durchschnittliche Entfernung zum Erwartungswert ist die Standardabweichung. In diesem Beispiel ist die Standardabweichung 0,78%, das bedeutet, dass die durchschnittliche tägliche Kursschwankung bei P&G im letzten Jahr 0,78% um den Erwartungswert von 0,04% war – also zwischen -0,74% (= -0,78 + 0,04) und 0,82% (= 0,78 + 0,04).
Die Standardabweichung ist im Prinzip das was wir in den Finanzmärkten Volatilität nennen. Für die Berechnung Volatilität wird einfach die Standardabweichung der Kursschwankungen der einzelnen Tage annualisiert, d.h. aufs Jahr hochgerechnet. Das geht indem man die Standardabweichung mit der Wurzel aus der Anzahl der Handelstage multipliziert. In diesem Fall erhält man 13,03%. Hierbei handelt es sich um die sogenannte historische Volatilität, da ja die Vergangenheit untersucht wird.
Wir können aufgrund der Regeln die wir oben bereits bei der Normalverteilung gesehen haben also – theoretisch – folgende Schlüsse ziehen:
– In 68,37% der Fälle sollte sich der Kurs zwischen -0,74% und 0,82% (= eine Standardabweichung Abstand vom Erwartungswert bzw. 1 Sigma) bewegt haben
– In 99,994% der Fällen sollte sich der Kurs zwischen -3,08% und 3,16% an einem Tag bewegt haben. Also nur einmal in etwa 15.800 Tagen sollte seine Bewegung außerhalb dieser Bandbreite liegen. Das wäre etwa alle 61 Jahre einmal an einem Tag der Fall.
Dennoch sehen wir, dass es einen Tag gibt, wo der Kurs zwischen 4% und 3,6% verloren hat, also mehr als 3,08%.
An diesem Beispiel ist zu erkennen, dass die Kursschwankungen an den Finanzmärkten nicht hinreichend durch die Normalverteilung erklärbar sind.
Es gab im letzten Jahr sogar (mindestens) eine Aktie die es geschafft hat mehr als ein “Sigma-6-Ereignis” zu erreichen, also etwas, das seltener als einmal in 1,9 Millionen Jahren passieren dürfte:
Im nächsten Bild habe ich die täglichen Kursschwankungen der Aktie “First Solar” als Diagramm dargestellt.
Auf den ersten Blick schaut das auch ein wenig nach Glockenkurve und Normalverteilung aus. Der Erwartungswert liegt hier bei -0,01%, Die Standardabweichung bei 2,99% (also bereits wesentlich höher als bei Procter and Gamble) und die annualisierte Volatilität beträgt 50,07%.
Aber eine Auffälligkeit gibt es: An einem Tag stieg die Aktie um 20,5%. Das entspricht einen Abstand von sagenhaften 6,88 Standardabweichungen. Die Wahrscheinlichkeit, daß das eintritt liegt bei etwa 1 zu 100 Milliarden. Es sollte also nur etwa alle 384 Millionen Jahre passieren. Also jedenfalls nicht ein einziges Mal seit Menschengedenken. Vor 384 Millionen Jahren bevölkerten noch Einzeller die Erde.
Zurück zur Black & Scholes Formel:
Der wichtigste Kniff bei der Black & Scholes Formel war es eben diese Normalverteilung auf die Finanzmärkte anzuwenden.
Die Annahme war, dass sich die Kursschwankungen an den Börsen zufällig und nach den Regeln der Normalverteilung verhalten.
Diese Formal hat es – vermeintlich – geschafft diese ungewissen Schwankungen des Marktes auf eine Formel zu reduzieren.
Ich verzichte hier darauf, die Formel zu veröffentlichen, da eine genaue Herleitung sowieso den Rahmen des Artikels sprengen würde. Wer sich interessiert kann hier auf wikipedia nachlesen.
Welche Probleme sich daraus ergeben können, habe ich bereits in obigen Beispielen gezeigt. Was die Formel aber für Folgen hatte kann man hier weiterlesen:
Welche Folgen hatte die Black&Scholes Formel auf die Finanzmärkte:
Das blinde Vertrauen auf diese Formel kann verheerende Wirkungen haben. Das beste Beispiel dafür ist der große Hedgefonds den die beiden Nobelpreisträger für die Black & Scholes Formel gemeinsam mit John Meriwether im Jahre 1994 gegründet hatten: Long Term Capital Management – kurz: LTCM.
Bei den Anlagestrategien dieses Fonds wurde die neue Formel oft angewandt. Auf der einen Seite wurden Optionen die aufgrund dieser Formel zu teuer erschienen einfach verkauft, auf der anderen Seite wurden Volatilitätserwartungen bei bestimmten Märkten aufgrund dieser Formel berechnet und entsprechende Risiken eingegangen. Vier Jahre lange konnte LTCM sehr gute Renditen erzielen, zeitweise sogar über 30% im Jahr.
Der Fonds LTCM hielt im Jahr 1998 über 1,25 Billionen (das sind 1250 Milliarden) US-Dollar an Assets, dabei waren auch viele Derivate und Optionen. Das Eigenkapital betrug zu diesem Zeitpunkt nur 2,1 Milliarden USD, was einem Hebel von fast 600 entspricht bzw. einer Eigenkapitalquote von nur 0,17%.
Dann spielten die Märkte – aus Sicht von LTCM – verrückt. Es gab plötzlich Kursausschläge die mathematisch – nach eben dieser Black & Scholes Formel – nur einmal in Milliarden von Jahren passieren hätten dürfen. Also quasi seitdem das Universum existiert, hätten solche Kurssausschläge nie stattfinden dürfen.
Doch daran hielten sich die Finanzmärkte nicht: Asienkrise, Russlandkrise etc. bescherten den Märkten im Jahr 1998 eben genau diese Volatilität mit der mathematisch nicht gerechnet werden konnte, und so musste der Fonds LTCM von der amerikanischen Zentralbank FED und 11 weiteren großen Investmentbanken gerettet werden um noch stärkere Verwerfungen an den Finanzmärkten zu verhindern. Die FED musste dafür sogar den Leitzinssatz senken.
Details kann man auch hier unter wikipedia nachlesen.
Welche Vorteile kann man aus der Black & Scholes Formel ziehen?
Der wahre Wert einer Option bleibt also weiter im Dunkeln bzw. dem Gefühl und der Risikobereitschaft des Optionshändlers überlassen. Die Märkte agieren meiner Ansicht nach sicher NICHT nach Regeln die der gaußschen Normalverteilung entsprechen.
Man kann diese Formel aber dafür benutzen um die sogenannte implizite Volatilität einer Option auszurechnen, also die Erwartungen des Marktes was die Kursschwankungen angeht. Dadurch bekommt man ein Gefühl dafür, ob eine Option teuer oder billig ist. Es gibt mittlerweile sogar einige wichtige Indices, die diese erwartete – implizite – Volatilität von Optionen messen. Der wichtigste davon ist der amerkanische VIX-Index, welcher die implizite Volatilität von Optionen auf den S&P 500 Index misst. Ich habe ihn im Financeblog schon öfters erwähnt. Das Ausrechnen dieser impliziten Volatilität geht mittels der Black & Scholes Formel.
Man muss diese Formel auch nicht selbst händisch anwenden, wenn man mit Optionen handeln möchte, da die Handelssysteme das schon automatisch erledigen. Man braucht die Formel also nicht zu kennen, man sollte nur wissen welche Voraussetzungen sie annimmt, wie sie in etwa funktioniert, und dass es sehr gefährlich sein kann, sich blind auf sie zu verlassen.
Derivate – spekulative Massenvernichtungswaffen oder sinnvolle Finanzinstrumente?
Derivate haben einen sehr schlechten Ruf – sie werden sogar als die “Massenvernichtungswaffen des Finanzmarktes” bezeichnet und gelten als Hauptverursacher der letzten Finanzkrise.
Sie stellen ein sehr spannendes Thema dar, deshalb fange ich heute eine Serie an in der ich – hoffentlich – jedermann über Funktionsweise bzw. Vor – und Nachteile diverser Derivate aufklären kann.
Ich werde heute am Beispiel von Optionen zeigen, dass Derivate nicht von Natur aus böse sind, sondern, dass es darauf ankommt wie man mit ihnen umgeht.
Das ist bisher einer der schwierigsten Artikel im Financeblog – ich habe aber versucht dennoch alles so zu erklären dass es für jeden (interessierten) verständlich ist.
Aus diesem Artikel ist der bisher längste im Financeblog geworden, obwohl er wirklich nur eine kurze Einführung bringt. Ich hoffe der Leser ist geduldig genug, ich denke es lohnt sich.
Mir ist es wichtig zu zeigen, dass Derivate nicht per-se böse oder gefährlich sind, sondern sogar wichtige Finanzinstrumente sind um bestimmte Risiken abzusichern. Jede Medaille hat 2 Seiten und die Boulevard-Presse zeigt meistens noch eine davon.
Bei Derivaten ist es wie bei einem Sportwagen: Derivate haben meistens eine sehr starke Hebelwirkung und erlauben es deshalb mit wenig Kapitaleinsatz sehr viel zu bewegen – wie ein PS-starkes Auto. Kann man damit nicht richtig umgehen oder wird übermütig so steigt die Unfallgefahr natürlich exponentiell – besonders im Vergleich zu einem normalen Kleinwagen.
Auf der anderen Seite kann ein Sportwagen z.B. sicherere Überholmanöver vollziehen als ein PS-schwacher Bolide, da er besser beschleunigen und in der Regel auch wesentlich besser bremsen kann als ein normales Auto. Er hat also seine Vorteile wenn man mit ihm umgehen kann.
Ähnlich – wenn auch ein wenig anders – ist das auch bei Derivaten: Versteht man sie richtig, und schätzt man das Risiko korrekt ein, so können sie sogar eine Versicherung für das Portfolio bilden und das Gesamtrisiko reduzieren. Auf der anderen Seite können sie lebensgefährlich werden, wenn man zuviel Risiko eingeht und auf den schnellen Gewinn hofft.
Was ist eine Option?
Zuerst einmal die Definition:
Eine Kauf-Option (Call) gibt dem Käufer der Option das Recht – aber nicht die Pflicht – ein bestimmtes Produkt zu einem festgelegten Preis bis zu einem festgelegten Zeitpunkt (amerikanische Option) bzw. an einem festgelegten Zeitpunkt (europäische Option) zu kaufen.
Eine Verkaufs-Option (Put) gibt dem Käufer der Option das Recht – aber nicht die Pflicht – ein bestimmtes Produkt zu einem festgelegten Preis bis zu einem festgelegten Zeitpunkt (amerikanische Option) bzw. an einem festgelegten Zeitpunkt (europäische Option) zu verkaufen.
Aus der Definition ist ersichtlich, dass eine Option über folgende Merkmale verfügen muss:
Merkmale einer Option:
1) Basiswert (“Underlying”)
Der Basiswert auf englisch “Underlying” bestimmt auf welches Produkt (Aktie, Rohstoff, Anleihe etc) sich die Option bezieht.
2) Ausübungspreis (“Strike”)
Der Strike ist der Preis zu dem der Basiswert am Fälligkeitstag der Option gekauft (Call) oder verkauft (Put) werden kann.
Liegt der Strike auf dem gleichen Niveau wie der Preis des Underlyings (das wäre z.B. bei einer Aktie die gerade 100 kostet ein Strike von 100) so spricht man von einer Option “at-the-money”, kurz ATM – auf deutsch: am Geld.
Liegt der Strike in einem Bereich wo die Ausübung der Option aus derzeitiger Sicht sinnlos wäre – wie z.B. ein Strike von 110 bei einer Call-Option oder ein Strike von 90 bei einer Put-Option wenn der Kurs des Underlyings gerade 100 beträgt, so spricht man von einer Option “out-of-the-money“, kurz OTM – auf deutsch aus dem Geld.
Schliesslich gibt es noch die Möglichkeit, dass eine sofortige Ausübung der Option möglich wäre und zu einem vorteilhaften Preis führen würde. Beispiel: Call-Option mit Strike von 90 oder Put-Option mit Strike von 110 bei einem Underlying-Kurs von 100.
Hier sagt man die Option ist “in-the-money“, kurz ITM – auf deutsch: im Geld.
3) Laufzeit
Die Laufzeit gibt an, wie lange die Option gültig ist.
Eine amerikanische Option kann jederzeit bis zur Fälligkeit ausgeübt werden. Eine europäische Option nur am Fälligkeitstag. Die meisten an der Börse gehandelten Optionen sind amerikanische Optionen (auch in Europa 😉
4) Options-Prämie: Die Prämie entspricht den “Kosten” der Option. Da eine Option im Prinzip ein Vertrag zwischen zwei Vertragspartnern ist, verlangt natürlich der Verkäufer der Option (=”Stillhalter”) eine Prämie für die Rechte die er dem Käufer mit der Option einräumt
Gekaufte Optionen nennt man auch “long Options“.
Noch eine wichtige Bemerkung:
In diesem Artikel spreche ich besonders an der Börse gehandelte Optionen an. Bei diesen Optionen gibt es tatsächlich immer 2 Vertragspartner, einen Käufer und einen Verkäufer.
Es gibt auch noch sogenannte Optionsscheine. Diese werden allerdings von Banken oder anderen Emitenten als Werpapiere ausgegeben, d.h. der Verkäufer von einem Optionsschein ist immer ein Finanzinstitut. Man “wettet” also beim Kauf eines Optionsscheines immer gegen dieses Institut. Auch die Prämie (also die Kosten) für diesen Optionsschein entstehen nicht am Markt sondern werden von dem ausgebenden Institut festgesetzt.
Auch kann man natürlich Optionsscheine nur kaufen. Es ist nicht möglich via Optionsscheinen “short” Positionen einzugehen, also auf die Seite des Optionsverkäufers zu treten. (dazu ein wenig später)
Beispiele für long Options:
long Call-Option:
Herr Müller hat ein Einfamilienhaus und beheizt dieses mit Heizöl. Der Tank ist gerade voll, aber der Preis für Heizöl ist derzeit extrem günstig. Es wird aber einige Monate dauern, bis wieder Platz im Tank ist.
Wie kann Herr Müller dennoch von den günstigen Preisen profitieren?
Die erste Möglichkeit wäre der Abschluss eines sogenannten Termingeschäftes. Er würde sich verpflichten z.B. in 3 Monaten zu einem heute festgelegten Preis eine bestimmte Menge Heizöl zu kaufen. Diese Geschäfte sind an der Börse als “Futures” oder “Forwards” bekannt.
Der Nachteil ist allerdings: Wenn der Preis für Heizöl weiter fällt, muss Herr Müller in 3 Monaten dennoch den vorher festgelegten Preis bezahlen.
Er kann sich aber auch eine Kauf-Option (Call-Option) auf Heizöl besorgen. Diese gibt ihm das Recht das Heizöl z.B. in 3 Monaten zu einem heute festgelegten Preis zu kaufen. Er muss es aber nicht kaufen. Er kann die Option auch verfallen lassen.
Steigt der Heizölpreis wieder, kann er seine Option ausüben und das Öl günstiger bekommen. Sinkt der Preis weiter, so lässt er die Option einfach verfallen.
Für Herrn Müller ist der Kauf dieser Option also eine Versicherung. Er sichert das Recht, Heizöl in 3 Monaten zum heute günstigen Preis zu kaufen und zahlt dafür eine Prämie, die Optionsprämie
Am Beispiel einer Aktie:
Wenn man z.B. auf eine Aktie die derzeit auf einem Kurs von 100 notiert eine Call-Option mit einem Strike von 110 und einer Laufzeit von 3 Monaten erwirbt, so hat man nach 3 Monaten das Recht diese Aktie für 110 zu kaufen. Sollte die Aktie bis dahin z.B. auf 120 gestiegen sein, so hat die Option dann einen Wert von 10. (Die Aktie kann durch Ausübung der Option für 110 gekauft werden und sofort für 120 verkauft werden – das entspricht einen Gewinn von 10)
Bleibt die Aktie aber unter 110 so ist die Option quasi wertlos, da das Recht die Aktie für 110 zu kaufen nichts bringt, wenn man die Aktie sowieso günstiger erwerben kann.
Gehen wir weiter davon aus, dass die Option mit dem Strike von 110 und Laufzeit 3 Monate für die genannte Aktie einen Preis von 2 hat. (Die Optionsprämie soll in diesem Beispiel also 2 betragen)
Sollte die Aktie tatsächlich in 3 Monaten auf 120 steigen und die Option einen Wert von 10 erreichen, so hätte sich der Wert der Option verfünffacht (500%), während der Preis der Aktie lediglich um 20% gestiegen ist (von 100 auf 120).
Die Option hat also eine sehr starke Hebelwirkung. In diesem Fall beträgt diese Hebelwirkung 25. Man kann also mit dem selben Einsatz quasi den 25fachen Gewinn machen als wenn man direkt in die Aktie investiert hätte. Allerdings kann man auch einfach alles verlieren, wenn die Aktie nicht über den Strike-Preis steigt.
Ein Hebel wirkt immer in beide Richtungen.
Der Kauf einer Option mit der Hoffnung auf große Gewinne aufgrund von Hebelwirkung ist ein klassisches Beispiel für Spekulation. Sollte nämlich die Erwartung einer entsprechenden Kurssteigerung nicht aufgehen, so ist der gesamte Einsatz (die bezahlte Optionsprämie) verloren – ein Totalverlust.
Man sieht also bereits jetzt: Eine Option kann einerseits eine Versicherung andererseits eine gefährliche Spekulation sein.
long Put-Option:
Herr Bauer ist Bauer und wird in etwa 3 Monaten seinen Weizen ernten. Derzeit ist der Weizenpreis seiner Ansicht nach sehr hoch, also beschließt er eine Put-Option (Verkaufsoption) auf Weizen zu erweben, die ihm das Recht gibt seinen Weizen in 3 Monaten zu einem heute festgelegten Preis zu verkaufen.
Steigt der Weizenpreis weiter, so kann er die Option einfach verfallen lassen, sinkt der Preis aber unter den Ausübungspreis (Strike) so kann er den Weizen dennoch zum festgelegten Preis verkaufen. Die Option ist also auch für ihn eine Versicherung und keine Spekulation.
Beispiel bei einer Aktie:
Eine Aktie notiert bei 100. Der Kauf einer Put-Option mit 3 Monaten Laufzeit und Strike 90 zu einem Preis (Prämie) von 2, würde bei einem Kursverfall auf 80 einen Gewinn von 8 bringen. Bleibt die Aktie allerdings bis zum Verfall der Option in 3 Monaten über 90, so verfällt die Option wertlos.
Hält man zum Beispiel Aktien die derzeit bei 100 notieren, kann man diese durch den Kauf einer Put-Option (long Put) gegen einen Kurssturz versichern. Man bezahlt zwar eine Prämie – wie das bei Versicherungen halt so üblich ist – aber wenn die Aktie unter 90 fällt, hat man das Recht sie dennoch für 90 verkaufen zu dürfen.
Diese Strategie nennt man “protective put“.
Jedes Geschäft hat 2 Seiten (Verkauf von Optionen, “short Options”):
In den bisherigen Beispiel sind wir immer davon ausgegangen, dass Optionen gekauft werden. Doch immer wenn es einen Käufer gibt muss es auch einen Verkäufer geben. Der Verkäufer von Optionen wird auch “Stillhalter” genannt. Er ist derjenige, der dem Käufer die Rechte einräumt. Im englischen – der Sprache der Finanzmärkte – sagt man zum Verkauf von Optionen auch “writing Options“, quasi “Optionen schreiben”.
Verkaufte Optionen heissen “short Options”
Definition short Call-Option aus Sicht des Verkäufers:
Durch den Verkauf einer Call-Option verpflichtet sich der Verkäufer (Stillhalter) der Option ein bestimmtes Produkt zu einem festgesetzten Preis bis zu einem bestimmten Zeitpunkt (amerikanische Option) bzw. an einem bestimmten Zeitpunkt (europäische Option) zu verkaufen. Er erhält dafür eine einmalige Optionsprämie.
Definition short Put-Option aus Sicht des Verkäufers:
Durch den Verkauf einer Put-Option verpflichtet sich der Verkäufer (Stillhalter) der Option ein bestimmtes Produkt zu einem festgesetzten Preis bis zu einem bestimmten Zeitpunkt (amerikanische Option) bzw. an einem bestimmten Zeitpunkt (europäische Option) zu kaufen. Er erhält dafür eine einmalige Optionsprämie.
Beispiel für short Options:
short Call:
Herr Bauer hat in seinen Silos etliche Tonnen Weizen gelagert und möchte diesen langsam verkaufen. Allerdings möchte er gerne noch ein wenig dazuverdienen. Der Weizenpreis ist seiner Meinung nach zwar schon recht hoch, aber er möchte gerne davon profitieren, dass generell auf einen weiteren Preisanstieg gehofft wird.
Also verkauft er Call-Optionen auf seinen Weizen. Er verpflichtet sich, seinen Weizen z.B. in 3 Monaten zu einem festgesetzten Preis zu verkaufen und erhält dafür eine Prämie.
Steigt der Weizenpreis tatsächlich stark weiter (über den Ausübungspreis der von ihm verkaufen Optionen) so profitiert er nicht mehr von diesem Anstieg, da er sich verpflichtet hat den Weizen zum festgesetzten Preis abzugeben. Bleibt der Preis allerdings konstant oder fällt er, so hat er die Prämieneinnahmen aus dem Optionsgeschäft ohne dafür liefern zu müssen. Er kann seinen Weizen also noch immer an jemand anderen verkaufen.
Beispiel bei einer Aktie: Angenommen man hält eine Aktie die derzeit bei 100 notiert, und die man ab einem Preis von 110 verkaufen würde, da sie einem zu teuer vorkommt.
Nun hat man die Möglichkeit eine Verkaufsorder für 110 aufzugeben und kann die Aktie verkaufen sobald der Preis auf 110 steigt.
Eine andere Möglichkeit, ist der Verkauf einer Call-Option (“short call”). Wenn man eine Call-Option mit Strike 110 und Laufzeit 3 Monate für eine Prämie von z.B. 2 verkauft, so muss man dem Käufer der Option diese Aktie spätestens am Fälligkeitstag für 110 verkaufen wenn er es verlangt. Steigt der Preis über 110 so profitiert man nicht vom weiteren Preisanstieg. Bleibt der Preis konstant oder fällt, so behält man die Optionsprämie und die Aktie.
Wenn man sowieso bei 110 verkaufen würde, ist der Verkauf einer Option also ein sinnvolles Geschäft, da man zusätzlich noch die Optionsprämie einnimmt. In unserem Beispiel sind das immerhin aufs Jahr gerechnet 8% Rendite zusätzliche Rendite auf das Aktieninvestment. (Prämie von 2 für 3 Monate Laufzeit mal 4 (um auf das ganze Jahr hochzurechnen) = 8. Da die Aktie bei Verkauf der Option genau auf 100 war beträgt die Rendite durch Einnahme von Optionsprämien aufs Jahr hochgerechnet also 8%)
Diese Strategie nennt man “Covered Call writing“, also “gedeckte Kaufoption verkaufen”. Gedeckt ist die Option deshalb, weil man ja auch die Aktien besitzt die man dem Käufer der Option bei Ausübung derselben liefern kann.
Gefährlich (und spekulativ) wird das verkaufen von Optionen dann, wenn sie ungedeckt sind. Es mag zwar verlockend sein, Prämien zu kassieren für die Kursentwicklung von Aktien die man selber nicht besitzt, besonders dann wenn man glaubt, dass der Kurs sowieso nicht über den Ausübungspreis (strike) steigen wird. Sollte der Kurs aber dennoch steigen, so ist man einem unendlichen Verlustrisiko ausgesetzt (theoretisch kann eine Aktie ja in unermessliche Höhen steigen und man müsste sie trotzdem zum Strike-Preis an den Optionsinhaber liefern)
short Put:
In diesem Beispiel kommen wir wieder auf Herrn Müller und sein Heizöl zurück. Es ist Hochsommer und der Öltank von Herrn Müller ist leer. Er hat es aber nicht eilig ihn aufzufüllen, da er in den nächsten Monaten sowieso nicht heizen muss.
Das Heizöl ist ihm derzeit ein wenig zu teuer. Er wäre bereit seinen Tank anzufüllen, wenn er das Öl um etwa 10% günstiger haben könnte.
Also verkauft er eine Put Option und verspricht dem Käufer dieser Option, dass er ihm in den nächsten 3 Monaten für 1000 Liter Heizöl auf jeden Fall einen Preis bezahlen wird der 10% unter dem heutigen Preis liegt. Er erhält dafür vom Käufer der Option eine Prämie.
Das ganze ist eine Win-Win-Situation. Herr Müller wird dem Käufer der Option das Heizöl abkauen sofern der Preis 10% oder mehr fällt. Der Käufer der Option hat sich hingegen gegen einen Preisverfall von mehr als 10% versichert. Herr Müller bekommt sein Öl auf diese Art sogar noch ein wenig günstiger, da er ja die Prämieneinnahmen vom Optionsverkauf auch noch vom bezahlten Ölpreis abziehen kann.
Fällt der Preis für Heizöl nicht, bleiben ihm die Prämieneinnahmen – er muss allerdings dann natürlich mehr für das benötigte Heizöl bezahlen.
Beispiel bei einer Aktie:
Angenommen eine Aktie notiert gerade bei 100 und man ist der Meinung, dass man sie gerne bei 90 kaufen würde, da sie bei diesem Preis ein Schnäppchen wäre.
Nun hat man wieder die Möglichkeit einfach eine Kauforder mit 90 aufzugeben und zu warten bis sie erfüllt wird. Sobald jemand die Aktie für 90 anbietet wird man sie erhalten.
Eine weitere Möglichkeit ist der Verkauf einer Put-Option auf diese Aktie (short Put) mit einem Strike von 90.
Angenommen die Laufzeit der verkauften Option beträgt wieder 3 Monate und die Prämieneinnahme 2, so wäre man verpflichtet in den nächsten 3 Monaten die Aktie für 90 zu kaufen (was man aber sowieso möchte). Man erhält die Aktie aber um 2,2% günstiger, da man ja auch noch die Optionsprämie eingenommen hat die man vom Kaufpreis abziehen kann: 90 – 2 = 88.
Die Apple-Aktie notiert derzeit bei USD 110,04. Eine Call-Option mit Strike 110 (ATM, “at-the-money”) und Laufzeit bis 20.2.2015 kostet derzeit USD 4,90 (das ist die Prämie)
Eine Put-Option mit Strike 110 (ebenfalls ATM) und Laufzeit ebenfalls bis 20.2.2015 kostet derzeit USD 5,10
CALL-Option:
In dem Chart sieht man jetzt wie sich der Wert so einer Option aus Sicht des Käufers (long CALL) bzw. aus Sicht des Verkäufers (short CALL) bei der Fälligkeit der Option am 20.2.2015 in Abhänigkeit vom Aktienkurs von Apple darstellt: Bis zu einem Kurs von 114,90 ist der Verkäufer der Option (short Call) der Gewinner. Er muss die Aktie für 110 USD verkaufen, hat aber USD 4,90 an Prämien erhalten. Erst wenn die Aktie über 114,90 steigt ist der Käufer der Option im Plus, da er ja die Prämie bezahlen musste. Der Käufer hat also dann Gewinne sobald die Aktie über den Strike plus die bezahlte Optionsprämie steigt.
Alles was der Käufer dann gewinnt, verliert der Verkäufer und vice versa. Es ist – wie bei allen Derivaten – also ein Nullsummenspiel. Was der eine gewinnt, verliert der andere.
Des einen Freud – des anderen Leid: Gewinn und Verlust beim Kauf bzw. Verkauf einer Call-Option
Bei der PUT-Option schaut die grafische Darstellung so aus:
Der Käufer der Option gewinnt umso mehr, je mehr die Aktie fällt, ver Verkäufer der Option bekommt auf jeden Fall seine Prämie, verliert aber, sobald der Kurs unter den Strike abzüglich der Prämie fällt. In diesem Fall ist das bei einem Aktienkurs von USD 104,1 der Fall, da die Prämie für eine Put-Option ATM (Strike 110) derzeit USD 5,1 beträgt.
Zusammenfassung und abschliessende Bemerkungen:
Wir haben im ersten Teil der Derivate-Serie gesehen, dass Optionen sowohl spekulativ als auch konservativ (z.B. als Versicherung) angewendet werden können.
Im nächsten Teil werde ich zeigen, wie man die Prämie von Optionen abschätzen bzw. berechnen kann und welche verheerenden Folgen der pure Glaube an die Mathematik auf den psychologisch gesteuerten Finanzmärkten haben kann. Nur soviel vorweg: Derjenige, der den Nobelpreis für die Formel zur Berechnung von Optionsprämien erhielt, ging mit einem Hedgefonds mit vielen Milliarden USD pleite, weil seine Formel versagte.
Heute geht es nicht direkt um Aktien, sondern um sogenannte Investment-Zerfifikate. Da diese Form des Investieren weit verbreitet ist und sehr stark beworben wird, ist es mir ein Anliegen auch darüber zu berichten und die Unterschiede zu einem Aktien-Investment herauszustreichen.
Ich denke, daß wir hierzulande auch deshalb viele Aktienmuffel haben, weil sie mit Empfehlungen für Zertifikate von ihrem “Vermögensberater”, Bankbetreuer, etc. schlechte Erfahrungen gemacht haben.
Viele werden also schon davon gehört haben, und wahrscheinlich diese Produkte auch von Bankberater ihres Vertrauens bereits angeboten bekommen haben.
Es handelt sich bei Zertifikaten um eine Form von Derivaten (was soviel bedeutet wie “Abgeleitete” Wertpapiere), da sich der Wert eines Derivates von der Entwicklung des Preises eines Basis-Wertpapiers (meistens einer Aktie) ableitet.
Der Preis eines Derivates steigt bzw. fällt in Abhängigkeit seines Basiswertes (auch “Underlying” genannt) in einem bestimmten, nicht immer linearen Verhältnis, oft auch mit starker Hebelwirkung.
Ich werde sicher noch einige Arikel zum Thema Derivate schreiben, besonders Optionen und Futures sind sehr viel gehandelte Derivate.
Für Anfänger sind Derivate allerdings nicht zu empfehlen! Erst wenn man genau versteht, wie sich der Wert eines Derivates in Abhängigkeit seines Basiswertes entwickeln kann, welche Szenarien und welche Risiken es gibt, sollte man überlegen darin zu investieren.
Was is nun von Zertifikaten zu halten:
Gleich einmal vorweg: Was mich an der Sache am meisten stört, ist, daß fast alle Banken als Herausgeber von Zertifikaten agieren und so tun, als ob diese Anlagemöglichkeit sicher und für jedermann geeignet ist, selbst dann wenn man sehr wenig Erfahrung hat.
Ich werde das anhand eines Beispiels erläutern:
Vor einigen Tagen bekam ich per Post von einer renommierten Bank folgenden Anlagevorschlag:
—-> Zitat aus der Werbebroschüre:
Ihr Anlageprofil
■ Sie erwarten eine stagnierende, leicht steigende Kursentwicklung der Basiswerte
■ Ihr Anlagehorizont beträgt 2 Jahre
Die Vorteile auf einen Blick:
■ Eine hohe und feste Zinszahlung von 8,50% pro Zertifikat an
jedem Beobachtungstag
Hohe Diversifikation der Branchen und niedrige Barriere von 60% erhöhen die Chancen einer maximalen Rückzahlung am Ende der Laufzeit
Ausgezeichnete Bonität des Emittenten: S&P Rating A und Moody’s Rating A11
Etablierte Basiswerte: Deutsche Börse AG, RWE AG, GDF Suez und Total SA
Die wesentlichen Risiken
Bei Kurssteigerungen der Basiswerte sind die Zinszahlungen und der Rückzahlungsbetrag fest. Dies bedeutet, dass der Anleger nicht in allen Fällen an Kurssteigerungen partizipiert.
Die Höhe der Rückzahlung kann bei entsprechend negativer Entwicklung der Basiswerte null betragen. Es besteht die Möglichkeit eines Totalverlustes.
Bonitätsrisiko des Emittenten: Bei Zahlungsunfähigkeit der XXX-Bank besteht das Risiko des Totalverlustes.
—–> Ende Zitat
Was bedeutet das nun?
Für einen Anfänger liest sich das so:
– 8,5% Zinszahlung, schon mal sehr toll. Da kann kein Sparbuch mithalten 😉
–Hohe Diversifikation (4 verschiedene Basiswerte), auch sehr gut, Risikostreuung ist schliesslich wichtig.
– Als erstes Risiko wird genannt, daß man nicht voll von Kurssteigerungen profitiert sondern eben maximal 8,5% p.a. erhält – egal man ist ja nicht unbescheiden.
– Es besteht die Möglichkeit eines Totalverlustes – “Das müssen sie dazuschreiben, das wird eh nie passieren..”
– Emittentenrisko: Daß meine Bank pleite geht ist sehr unwahrscheinlich, schließlich werden die Banken im Notfall sowieso immer vom Staat gerettet.
Wie funktioniert das genannte Zertifikat wirklich:
Jedes Zertifikat ist ein von einem “Emittenten” – meistens einer Bank – herausgegebenes Wertpapier, welches eine bestimmte Laufzeit hat und in Abhängigkeit von einem oder mehreren Basiswerten Auszahlungen verspricht.
Es gibt also unzählige Möglichkeiten so ein Zertifikat zu gestalten. Die einfachste Möglichkeit sind z.B. Open-End Index-Zertifikate welche einen Index 1:1 abbilden und eine endlose Laufzeit haben. Man kann mit diesen Zertifikaten z.B. für EUR 100,- den DAX kaufen und nach einiger Zeit wieder an die Bank zurückverlaufen. Bei gestiegenem DAX mit entsprechendem Gewinn, ansonsten mit Verlust.
Da die Bank der Emittent des Zertifikates ist, ist das Zertifikat quasi ein Versprechen der Bank, zu bestimmten Bedingungen an einem bestimmten Zeitpunkt Zahlungen an den Zertifikatsinhaber zu leisten.
Kann die Bank diesen Zahlungsversprechen nicht nachkommen, ist das Zertifikat wertlos – das ist das sogenannte Emittentenrisiko.
Dieses Risiko ist in der Vergangenheit auch bereits relevant geworden. Der größte und bekannteste Fall war die Pleite von Lehman Brothers im September 2008. Lehman hatte abertausende von Zertifikaten aufgelegt und an Millionen von Anlegern verkauft, welche nach der Pleite nur noch durch die Finger schauen konnten.
In diesem Fall hat das Zertifikat eine Laufzeit von 2 Jahren und verspricht eine Zinszahlung von jährlich 8,5% wenn keiner der 4 Basierte während dieser Laufzeit unter eine Barriere von 60% des Aktienkurses fallen, welchen sie zum Ausgabezeitpunkt des Zertifikates hatten. Wenn am Ende der Laufzeit alle 4 Basiswerte über der Barriere notieren, erhält der Anleger seinen Einsatz zurück.
Sollte EINER der 4 Basiswerte während der Laufzeit unter diese Barriere fallen, so erhält der Anleger am Ende der Laufzeit (also nach 2 Jahren) kein Geld sondern die Aktien von demjenigen Basiswert mit der SCHLECHTESTEN Performance.
Das ist meiner Ansicht nach Täuschung des Anlegers.
Es wird mit Diversifikation geworben, aber das Gegenteil ist der Fall.
Normalerweise bedeutet Diversifikation, daß man das Risiko streut, also z.B. 4 Aktien kauft und wenn eine davon schlecht geht und die anderen gut, der Verlust eingedämmt wird bzw. vielleicht sogar noch ein Gewinn herausschaut.
Es ist unglaublich, aber hier trifft exakt das Gegenteil zu:. Da man auf jeden Fall Angst haben muß, daß sich einer der 4 Basiswerte schlecht entwickelt, ist man nicht diversifiziert, sondern man hat quasi das vierfache Risiko. Hätte man nur einen Basiswert müsste man nur einmal “schwitzen”. In diesem Fall hier, muß man aber für 4 Aktien hoffen, dass KEINE davon die untere Barriere berührt. Unglaublich, daß so etwas heutzutage als “Diversifikation” verkauft wird.
Gerade Unerfahrene können aber hier sehr schnell drauf hereinfallen.
Fazit:
Das Beispiel zeigt, wie Zertifikate oft als einfache Produkte verkauft werden, die Sicherheit (in diesem Fall z.B. durch Diversifikation) und hohe Erträge versprechen. In Wirklichkeit sind es oft (auch im Beispielfall) komplexe Derivate, die von der Bank durch viele Optionsgeschäfte abgebildet werden müssen. Wenn man also nicht weiss, wie genau Optionen funktionieren, oder vielleicht noch nie davon gehört hat, dann sollte man von dem Zertifikat auch die Finger lassen. In dem Moment wo man dieses Zertifikat kauft, geht man automatisch indirekt Positionen in mehreren Optionsgeschäften ein – ohne es zu wissen.
Es gibt aber von vielen Emittenten ähnliche Zertifikate wie dieses Beispiel. Sie heißen z.B. “Protect Multi Aktienanleihe” oder “Multi Aktienanleihe Protect” oder nur “Multi Aktienanleihe” oder gar “Europa Blue-Chip Anleihe” (das ist der kreativste Name 😉
Die Namensgebung hängt also von der Qualifikation der Marketingabteilung des Emittenten ab.
Was ist bei Zertifikaten generell zu beachten:
Das Beispiel hat bereits gezeigt, wie komplex ein – sicher für jeden Bankberater einfach zu verkaufendes Produkt – sein kann.
Generell wichtig ist:
– Zertifikate haben meistens eine beschränkte Laufzeit und die Auszahlung ist abhängig von einem oder mehr Basiswerten.
Wenn sich der Basiswert während der Laufzeit nicht gut entwickelt, können große Verluste entstehen, die bei einer direkten Investition in den Basiswert einfach “ausgesessen” werden können, sofern man an das Unternehmen glaubt.
Bei der direkten Investition ist man schließlich direkt beteiligt und kann die Aktie solange halten wie man möchte. Das Zertifikat läuft aber irgendwann aus. Es ist also eine zeitlich begrenzte Wette auf den Kursverlauf und ist deshalb keine langfristige Investition. Wie wir mittlerweile wissen kann der Kursverlauf stark schwanken, auch bei fundamental guten Unternehmen. Wenn man vom Unternehmen überzeugt ist, ist das egal, AUSSER man wettet zeitlich begrenzt auf den Kursverlauf.
– Als Zertifikate-Investor ist man Gläubiger des Emittenten und keineswegs direkt am Basiswert beteiligt.
Wenn man eine Aktie kauft, ist am am Unternehmen beteiligt. Man hat ein Stimmrecht auf der Hauptversammlung und ein Recht auf anteilige Dividenden etc.
Wenn man über ein Zertifikat an der Wertentwicklung einer Aktie beteiligt ist, so hat man nur das Versprechen des Emittenten abhängig von der Kursentwicklung der Aktie Zahlungen zu leisten. Man ist NICHT an der Firma direkt beteiligt, kann nicht auf die Hauptversammlungen gehen und abstimmen und hat auch kein Recht auf die Dividenden – in manchen Fällen werden einem die vom Emittenten auch weitergeleitet, aber nicht immer.
Schlußwort:
Ich würde eigentlich niemanden empfehlen zu Zertifikaten zu greifen. Anfängern deshalb nicht, weil es zu komplexe Produkte sind und Fortgeschrittene können immer Alternativen finden. Man kann jedes Zertifikat selbst nachbilden z.B. über Optionen.
Das einfachste Beispiel einer sinnvollen Alternative sind die Indexzertifikate: Es gibt auch ETFs welche ebenfalls den Index nachbilden. Beim ETF aber ist man direkt an den Unternehmen im Index beteiligt, da man an einem Fonds beteiligt ist, der die Aktien wirklich hält. Das Emittentenrisiko ist damit ausgeschlossen. Auch Dividenden bekommt man 1:1 weitergereicht.
Bein Indexzertifikat hingegen hat man nur des Versprechen des Emittenten, immer den Kurswert des Indices für das Zertifikat zu bezahlen. Der Emittent muss dafür nicht zwingend auch die Basiswerte alle halten und wenn er einmal nicht bezahlen kann ist das einfach Pech. (siehe Lehman)
Bisher habe ich immer nur Firmen innerhalb von Branchen verglichen.
Heute werde ich einmal ein paar ganze Brachen miteinander vergleichen und untersuchen welche am ertragreichsten wirtschaften bzw. mit welchen man in der Vergangenheit (und vielleicht auch in der Zukunft) gut verdienen konnte. Soviel vorab: Es sind interessant und unerwartete Ergebnisse herausgekommen.
Ich habe mich bei dem Vergleich für amerikanische Branchenvertreter entschieden, da der amerikanische Aktienmarkt am weitesten entwickelt ist, und es dort auch problemlos möglich ist mittels ETFs (exchange traded Funds) in Brachenindices zu investieren.
Wenn man sich nicht mit Einzeltiteln befassen möchte, ist ein ETF die sinnvollste Möglichkeit investiert zu sein. Es fallen fast keine Management-Gebühren an und man partizipiert an der Performance eines Aktien-Korbes. Es ist natürlich auch hier wichtig sich zu überlegen, wo man am sinnvollsten investiert.
Deshalb habe ich ein paar Brachen-ETFs unter die Lupe genommen.
Zu den verglichenen Branchen: Zuerst einmal ein kurzer Abriss über die verschiedenen “Vergleichskanditaten”
Verbrauchsgüter: Auf englisch “consumer staples” sind Alltagsgüter, die man immer wieder benötigt und die man ständig ersetzen muß, wie z.B. Lebensmittel, Putzmittel, Hygiene-Artikel, Zigaretten etc.
Für den Vergleich habe ich den ETF “SPDR Consumer Staples”
Die größten Mitglieder des Fonds sind Procter & Gamble, Coca-Cola und Phillip Morris
Gesundheit:
Auf englisch “health care”. Insbesonders sind hier Pharma-Firmen enthalten, aber auch Hersteller von Bedarf für Ärzte und Krankenhäuser und Biotech-Firmen inkludiert.
Der ETF “SPDR health care” enthält unter anderem Firmen wie Johnson & Johnson, Pfizer und Merck
Konsumgüter:
Auf englisch “consumer discretionary” sind Konsumgüter die man sich zum Vergnügen bzw. für das alltägliche Leben anschafft, die aber keine Verbrauchsgüter sind. Der ETF “SPDR consumer discretionary” hält als größte Titeln Comcast, Walt Disney und Home Depot. Es sind aber auch Autohersteller wie Ford bzw. der Schuh-Hersteller NIKE.
Versorger:
Englisch “Utilities” In diese Sparte fallen besonders die Strom- und Gas-Lieferanten. Der ETF “SPDR Utilities select sector Fund”enthält Werte wie Duke Energy Corp, American Electric Power, Pacific Gas and Electric
Kommunikation:
Hier geht es um den Telekom-Sektor. Die größten Mietglieder des ETF “iShares US Telecummunications” sind AT&T, Verizon, T-Mobile US
Technologie:
Der ETF “SPDR Technology Selet Sector Fund” enthält Titel wie Apple, Microsoft, Google, Facebook – also quasi die amerikanischen Innovationsführer. Der Technologie-Sektor ist der mit den stärksten erwartetem Wachstum unter den hier verglichenen.
Die Performance der unterschiedlichen Branchen seit 2001: In der Tabelle habe ich die Renditen der einzelnen Sparten nach “total-return” berechnet – das bedeutet Kursgewinn inkl. Dividendenauschüttungen. Wobei die Dividenden immer wieder in das jeweilige Unternehmen reinvestiert werden.
Als Referenzindex habe ich den breiten S&P 500 Index hergenommen, er beinhaltet die 500 größten amerikanischen Unternehmen.
Die Tabelle zeigt also, wieviel man pro Jahr (per anno) verdiehnt hätte, wenn man im jeweiligen Einstiegsjahr am 1. Jänner begonnen hätte in einen bestimmten Bereich zu investieren und die Investition bis heute gehalten hätte.
Hätte man z.B. im Jahr 2001 (Einstiegsjahr) in den S&P 500 investiert, hätte man heute 4,95% pro Jahr verdient. Hätte man im gleichen Jahr in die Konsumgüter-Branche investiert, wären es 8,51% pro Jahr gewesen.
Ich habe jeweils die Branche welche in einem bestimmten Einstiegsjahr die beste Rendite bis heute brachte rot hervorgehoben.
Ganz unten in der Tabelle habe ich die jeweils besten Renditen bezogen auf das Einziegsjahr zusammengerechnet.
Zu Erkennen ist zum Beispiel, daß die Gesundheitsbranche in 7 von 13 Jahren die meiste Rendite brachte (bezogen auf den Einstieg in die Investiton), d.h. man hätte in 7 von 13 Jahren beginnen können in diese Branche zu investieren und hätte heute unter den vergleichenen Sparten den meisten Gewinn.
Sehr interessant ist, daß der Technologie-Bereich zu keinem Einstiegszeitpunkt die beste Investition war. Auch mit dem Telekom-Sektor konnte man zu keinem einzigen Einstiegszeitpunkt die anderen schlagen.
Der Chart zeigt die Entwicklung der Kurse der einzelnen Branchen-ETFs seit 2001.
Die rote Linie ist der S&P 500-Index. Er liegt ungefähr im Mittelfeld. Die stärkste Performance seit 2001 konnten die Konsumgüter verzeichnen und die schwächste der Telekom-Sektor.
An dem Chart ist auch zu sehen, wieso gerade der Gesundheitsbereich (hier habe ich ihn “Pharma” genannt), die grüne Linie, zu so vielen Einstiegs-Zeitpunkten die beste Rendite geliefert hat: Er hat weniger Volatilität als die anderen. Bei dem Absturz 2008 ist das gut zu Sehen. Die grüne Linie fällt nicht so tief wie die meisten anderen.
Zur Bewertung: Natürlich ist es nicht ganz einfach einen ganzen Index (und ETFs bilden immer einen Index ab) zu bewerten, da sich die Mitglieder bzw. deren Gewichtung regelmäßig ändern können.
In der Tabelle habe ich die wichtigsten Bewertungskennzahlen der einzelnen Branchen-Indices (die von den beschriebenen ETFs abgebildet werden) für 2014 dargestellt:
S&P 500
Verbrauchsgüter
Gesundheit
Konsumgüter
Versorger
Kommunikation
Technologie
Dividendenrendite
1,91%
2,55%
1,44%
1,37%
3,65%
2,11%
1,77%
KGV
17,80
18,84
21,90
20,32
16,45
13,83
18,54
KBV
2,69
4,51
3,91
4,31
1,67
3,31
3,96
KUV
1,74
1,22
1,89
1,37
1,53
1,35
2,81
GK-Rendite
3,27%
8,94%
6,83%
6,53%
2,39%
5,49%
9,52%
Die KGVs liegen relativ nahe beisammen (zwischen 17,8 und 21,9) d.h. man kann aus heutiger Sicht nicht sagen, daß ein einzelner Bereich überteuert ist. Entweder alle sind zu teuer oder keiner – es sticht jedenfalls keiner hervor.
Anders sieht das bei der Ertragskennzahl, der Gesamtkapitalrendite, aus: Technologie und Verbrauchsgüter sind hier führend. (Sehr interessant, da ja der Technologie-Sektor in der Vergangenheit so eine schlechte Performance im Vergleich zu den anderen lieferte. Entweder sind Index-Mitglieder getauscht worden, oder die Ertragskraft hat sich erst jetzt auf diesem hohen Niveau eingependelt)
Wenn man nämlich von etwa ähnlichen KGVs ausgeht, dann sollte logischerweise sich die Ertragskraft eines Unternehmens bzw. einer Sparte eigentlich auf den Kurs auswirken – es muß sogar so sein: Wenn 2 Firmen immer das gleiche KGV haben und eine aber den Gewinn stärker steigert als die andere, wird diese automatisch einen höheren Kursgewinn verzeichnen.
Es ist also sinnvoll in Branchen zu investieren, die generell ertragstark sind. z.B. in der Verbrauchsgüter-Branche die ich ja bereits hier analysiert habe gibt es so gut wie keine Firma die Verlust macht. Ähnlich sieht es im Pharma-Bereich aus. Siehe hier.
In den anderen Sparten gibt es natürlich “Stars” mit Super-Kennzahlen aber auch absolute Verlierer. Der Index/ETF bildet natürlich einen Durchschnitt darüber. Gerade im Technologie-Bereich ist das extrem. Eine ertragstarke Apple z.B. wird mit Firmen in einen Topf geworfen, die noch nie einen Cent verdient haben. Deshalb würde ich in diesem Bereich eher auf Einzeltitel gehen.
Fazit:
Aus meiner Sicht stellen die Sektoren “Gebrauchsgüter”, “Gesundheit” und “Konsumgüter” das sicherste Investment dar. Der Technologie-Sektor bietet aufgrund seiner “günstigen” Bewertung Chancen aber auch mehr Risiko. Von den Versorgern und dem Telekom-Bereich würde ich abraten. Zu starker Wettbewerb schlägt sich schon seit Jahren auf die Performance nieder. Auch eine Investition in den breit gestreuten Index halte ich nicht für attraktiv – da schleppt man noch mehr “schlechte” Firmen mit.
Der Finanz-Blog für den fundamental interessierten Anleger